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Abstract. The momentum and energy relaxation rates associated with electron–acoustic
phonon interaction in a free-standing rectangular GaAs quantum wire have been calculated
taking into accountconfinedand interfacephonon modes. Phonon confinement has two major
consequences: (i) it increases relaxation rates by several orders of magnitude, and (ii) it increases
the ratio of absorption to emission processes in narrow intervals of energy thereby making the
energy relaxation rate in these intervals negative. An external magnetic field always decreases
the momentum relaxation rate (thus increasing the carrier mobility) even though the scattering
rate (the inverse of the quasi-particle lifetime) may increase or decrease depending on whether
the interaction is polar (piezoelectric) or non-polar (deformation potential).

1. Introduction

Electron–phonon interaction in quantum wires has been studied by a number of researchers
in the past [1–9, 11, 13]. In this paper, we present (to our knowledge) the first study of
momentum and energy relaxation rates associated with such interactions when both electron
and acoustic phonon confinement are taken into account. We also show how an external
magnetic field can affect these rates.

The strength of electron–phonon interaction in a quantum wire depends on two
quantities: the joint electron–phonon density of states, and the transition matrix element.
Both of these quantities are influenced by quantum confinement of electrons and phonons.
Phonon confinement causes significant non-linearities in the dispersion relations of acoustic
phonon modes and vastly increases the phonon density of states. The electron density
of states is also altered by quasi-one-dimensional confinement and (if a magnetic field is
present) by the additional magnetostatic confinement due to the field [12]. As a result of
the latter, the joint density of electron–phonon states depends on the magnetic field and can
be ‘tuned’ using the field. The transition matrix element, on the other hand, is determined
by the overlap between three entities: the wave function of the electron’s initial state, the
wave function of the final state, and a phonon’s normal-mode amplitude. A magnetic field
skews the wave functions of a travelling electron state towards an edge of the wire (‘edge
states’). This alters the overlap between the wave functions of the electron’s initial state
and final state and the phonon mode. Thus, it changes the transition matrix element. The
combined result of all of this is that the scattering rate, the momentum relaxation rate and
the energy relaxation rate are extremely sensitive to quantum confinement and the presence
of an external magnetic field.
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This paper is organized as follows. In the next section we briefly present the prescription
for calculating energy and momentum relaxation rates. Section 3 shows the results of our
calculations, and the conclusions are presented in section 4.

2. Theory

The energy-dependent momentum and energy relaxation rates,τ−1
m (E) andτ−1

e (E), assoc-
iated with any type of electron–phonon scattering are calculated from the corresponding
transition rateS(Eν,E′ν ′ ,±γ,±ωγ ) by integrating over all possible final electron states and
phonon wave vectors, and then summing over all phonon modes or branches:

1

τm(Eν)
=
∑
n

∫ ∞
0

∫ γmax

0
dE′ν ′ dγ S(Eν,E

′
ν ′ ,±γ,±ωn,γ )(1− f (E′ν ′))

(k − k′)
k

(1)

1

τe(Eν)
=
∑
n

∫ ∞
0

∫ γmax

0
dE′ν ′ dγ S(Eν,E

′
ν ′ ,±γ,±ωn,γ )(1− f (E′ν ′))

(Eν − E′ν ′)
Eν

(2)

whereEν is the electron energy in theνth subband,k (γ ) is the electron (phonon) wave
vector along the unconfined direction of the quantum wire,ωn,γ is the frequency of the
nth phonon mode with wave vectorγ , andf (η) is the occupation probability of a state
with energyη. Primed and unprimed quantities refer to initial and final electron states
respectively. The calculation of the transition rate,S(Eν,E

′
ν ′ ,±γ,±ωn,γ ), for confined and

interface acoustic phonon interaction in a quantum wire (subjected to a magnetic field) has
been described by us in a previous paper [11]. The reader is referred to reference [11] for the
pertinent technical details. We will assume that the electron distribution is non-degenerate
so thatf (E′ν ′) ≈ 0.

Equations (1) and (2) can be recast as

1

τm(Eν)
= 1

h̄

∑
Eν−E′ν′±h̄ωn,γ=0

D±(E′ν ′ , ωn,γ )|M(Eν,E′ν ′)|2(N + 1/2∓ 1/2)
(k − k′)
k

(3)

1

τe(Eν)
= 1

h̄

∑
Eν−E′ν′±h̄ωn,γ=0

D±(E′ν ′ , ωn,γ )|M(Eν,E′ν ′)|2(N + 1/2∓ 1/2)
(Eν − E′ν ′)

Eν
(4)

whereM(Eν,E′ν ′) is the transition matrix element connecting initial and final electron
states andD±(E′ν ′ , ωn,γ ) is the one-dimensional joint electron–phonon density of final states
defined as

D±(E′ν ′ , ωn,γ ) =
2π

|∂(Eν − E′ν ′ ± h̄ωn,γ )/∂γ |
θ((Eν − E′ν ′ ± h̄ωn,γ ) (5)

with θ being the Heaviside unit step function.D+ corresponds to phonon absorption andD−

corresponds to phonon emission. The summations in equations (3) and (4) are performed
only over the zeros of the functionφ±n,γ,ν = E′ν(k ± γ )− Eν(k)∓ h̄ωn,γ .

In order to obtainD±(E′ν ′ , ωn,γ ) andM(Eν,E′ν ′), we start by first numerically solving
the Schr̈odinger equation in a quantum wire subjected to a magnetic field to obtain the
dispersion relations and wave functions of hybrid magnetoelectric states (see reference
[12]). Next, we solve the elasticity equation numerically to derive the acoustic phonon
modes and their dispersion relations (see reference [11]). In a quantum wire of rectangular
cross-section, there are no exact solutions to the elasticity equation. Therefore, one can find
only approximate solutions which have displacements along all three coordinate directions,
unlike the pure shear, dilatational, and flexural modes of a quantum well [8–10]. From
these results, we calculateD±(E′ν ′ , ωn,γ ) andM(Eν,E′ν ′).
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Figure 1. A quantum wire of rectangular cross-section subjected to a magnetic field along the
x-axis. The width of the wire is much larger than the thickness.

3. Results

We have calculated the energy and momentum relaxation rates in a free-standing rectangular
GaAs quantum wire of thickness 40̊A and width 500Å (as shown in figure 1) with a
magnetic field directed along thex-direction. The thickness (along thex-direction) is so
small that only the lowest transverse subband in this direction will be occupied under all
circumstances.

In figure 2, we plot the energy-conserving functionφ±n,γ,1 = E′1(k ± γ )− E1(k)∓ h̄ωγ
as a function of the transfer wave vectork′ − k (or ±γ ) for the lowest four branches
of the non-polar acoustic phonon ‘thickness’ modes [8, 9]. The solid lines correspond
to absorption (φ+n,γ,1 = E′1(k + γ ) − E1(k) − h̄ωγ ) and the broken lines to emission
(φ−n,γ,1 = E′1(k − γ ) − E1(k) + h̄ωγ ). No magnetic field is applied. The electron is in
the lowest subband and has a kinetic energyE1 = 178.6 meV. Note that we are considering
only intra-subbandscattering within the first electron subband. Zeros of the functionφ

correspond to simultaneous energy and momentum conservation and therefore the occurrence
of a scattering event. In order to find the right phonon in thenth branch participating in a
scattering event, we scan the phonon wave-vector space to locate the zeros ofφ±n,γ,ν . This
is easily accomplished by dividing the wave-vector space into a grid with a mesh spacing
of 1γ and then focusing on the regions where the productφ±n,γ,νφn,γ+1γ,ν is negative.

We will now categorize scattering events into four categories: forward emission, forward
absorption, backward emission, and backward absorption. ‘Forward’-scattering processes
will be defined as those which increase an electron’s momentum by scattering it in the
forward direction. Since the momentum increases, the quantityk′ − k is positive. For
intra-subband transitionand for scattering out of the lowest subband, forward scattering
corresponds to absorption only, since emission will decrease the momentum. For inter-
subband transitions, and when the initial state of the electron is not in the lowest subband,
it could correspond to either absorption or emission. By the same token, we will define
‘backward’-scattering events as those that decrease an electron’s momentum by scattering it
backward. For such a process, the quantityk′ − k is negative. In the case of both intra- and
inter-subband transition, backscattering can correspond to either emission or absorption. The
regions corresponding to forward absorption, backward emission, and backward absorption
are shown in figure 2. Note that there is no region corresponding to forward emission since
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Figure 2. The energy- and momentum-conserving functionφ±n,γ,1 = E′1(k±γ )−E1(k)∓ h̄ωn,γ
for a GaAs quantum wire with thickness 28.3Å and width 56.6Å at zero magnetic field. The
electron is initially in the lowest subband with an energy of 178.6 meV. Only intra-subband
scattering is considered. The regions corresponding to forward absorption, backward emission,
and backward absorption are designated. For intra-subband scattering, there can be no forward
emission. Absorption is denoted by solid lines and emission by broken lines. Only the first four
thickness branches of confined acoustic phonon modes are considered for clarity. Scattering
takes placeonly whenφ±n,γ,1 = 0.

(i) it is forbidden in intra-subband transition, and also (ii) it is forbidden when the initial
state of the electron is in the lowest subband.

In figure 3, we plot the joint electron phonon density of states (JEPDS) (defined as
JEPDS± = ∑

n D
±(E′ν ′ , ωn,γ )) as a function of the final electron energyE′1 when the

electron’s initial state is in the first subband and its kinetic energy isE1 = 178.6 meV. The
lattice temperature is assumed to be 77 K. No magnetic field is applied. Again, only intra-
subband scattering is considered, but all width and thickness modes of acoustic phonons
(within a phonon energy of 10kT ) are taken into account in the summation for JEPDS±.
There are a denumerably infinite number of confined phonon modes, but the higher-energy
modes are barely occupied because the occupation probability is governed by Bose–Einstein
statistics. The solid line in figure 3 corresponds to backward phonon absorption and the
broken line to emission. The small steps in JEPDS arise from the unit step functionθ

appearing in equation (5). At these steps only, energy and momentum are both conserved
and a scattering event actually takes place. Physically, the occurrence of a step signals the
disappearance of a phonon mode which can no longer contribute to a scattering event because
of the requirement of simultaneous energy and momentum conservation as embodied in the
unit step functionθ .

In figure 3, there is a ‘dead band’ around the initial energy where JEPDS± is zero. This
region obviously corresponds to quasi-elastic scattering, i.e. the case where the final-state
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Figure 3. The joint electron–phonon density of (final) states (JEPDS±) as ‘seen’ by an electron
with energyE = 178.6 meV in the first subband of a GaAs quantum wire with cross-section
28.3 Å × 56.6 Å at zero magnetic field. The lattice temperature is 77 K and only intra-subband
scattering has been considered. Energies below 178.6 meV correspond to backward emission
(there is no forward emission in intra-band scattering). Energies above 178.6 meV correspond to
absorption. The solid line is for backward absorption and the broken line for forward absorption.

energy is close to the initial-state energy. For intraband transitions, quasi-elastic events
would require almost zero-energy phonons with non-zero wave vectors. Such phonons do
not exist. Consequently, the JEPDS vanishes in this band.

In figures 4(a)–4(c), we plot the scattering rate 1/τ(E1), the momentum relaxation rate
1/τm(E1), and the energy relaxation rate 1/τE(E1) versus an electron’s initial-state energy
E1 for deformation potential (non-polar acoustic phonon) scattering. The electron’s initial
state is in the first subband while the final state can be in any subband that is accessible up
to the maximum initial energy considered plus a phonon energy. The lattice temperature is
assumed to be 77 K and the quantum wire has a width of 500Å and a thickness of 40̊A.
The rates are plotted for two different values of the magnetic field: 0 and 10 T.

In figure 4, there are two very important features. First, the scattering rate calculated
with confinedacoustic phonons is, on average,four to five orders of magnitude higher
than that calculated assumingbulk acoustic phonon modes [6]. This feature was also
observed in reference [8]. As a result, the momentum and energy relaxation rates are also
about five orders of magnitude higher than those calculated assuming bulk phonons [13].
Second, a magnetic field suppresses all relaxation rates associated with deformation potential
interaction. The origin of this suppression is examined below.

A magnetic field has four major effects on electron–phonon interaction: (i) it suppresses
backscattering [5, 6, 11] by spatially separating forward- and backward-travelling electron
states, (ii) it suppresses inter-subband scattering by increasing the energy separation between
the subbands (higher-energy phonons are required when the subband separation increases,
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(a)

Figure 4. (a) The scattering rate 1/τ(E1) for an electron in the first subband versus the initial
electron energyE1. The rates are calculated for deformation potential interaction in a wire of
width 500Å and thickness 40̊A. The results are shown for two different values of the magnetic
flux density: 0 and 10 T. The lattice temperature is 77 K. (b) The momentum relaxation rate
1/τm(E1) for an electron in the first subband versus the initial energyE1. The rates are
calculated for deformation potential interaction in a wire of width 500Å and thickness 40̊A.
The results are shown for two different values of the magnetic flux density: 0 and 10 T. The
lattice temperature is 77 K. (c) Themagnitudeof the energy relaxation rate 1/τE(E1) for an
electron in the first subband versus the initial energyE1. The rates are calculated for deformation
potential interaction in a wire of width 500̊A and thickness 40̊A. The results are shown for
two different values of the magnetic flux density: 0 and 10 T. The lattice temperature is 77 K.
The broken lines correspond to anegativeenergy relaxation rate and the solid lines to apositive
energy relaxation rate. (d) The three constituents of the momentum relaxation rate 1/τm(E1)

(backward emission, backward absorption, and forward absorption) are plotted as functions of
the initial electron energyE1 for a magnetic field of 0 T. The scattering is due to deformation
potential interaction. There is no constituent due to forward emission since that is forbidden
when the initial state of the electron is in the lowest subband. (e) The three constituents of the
momentum relaxation rate 1/τm(E1) (backward emission, backward absorption, and forward
absorption) are plotted as functions of the initial electron energyE1 for a magnetic field of
10 T. The scattering is due to deformation potential interaction. There is no constituent due to
forward emission since that is forbidden when the initial state of the electron is in the lowest
subband. (f ) The deformation scattering potential as a function of the wire width and phonon
wave vector in a quantum wire of width 500̊A and thickness 40̊A.

and such phonons are rarer since the equilibrium phonon occupation factor obeys the Bose–
Einstein distribution), (iii) it increases interface phonon scattering (electrons are pushed
towards the edges of the wire by the Lorentz force and interact more strongly with interface
phonons) [5], and (iv) it opens up new scattering channels and thus increases the total
scattering rate [5]. This happens since a magnetic field skews the electron wave functions
towards an edge of the wire and thus alters their parity. Therefore, transitions that are
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(b)

(c)

Figure 4. (Continued)

forbidden in the absence of a magnetic field (from parity considerations) are no longer
forbidden [5].

Whether any particular relaxation rate actually increases or decreases in the presence of
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(d)

(e)

Figure 4. (Continued)

a magnetic field depends on the relative importance of the above four factors. In figure 4,
we see that the deformation potential scattering rate (as well as the associated momentum
and energy relaxation rates) decreases significantly in a magnetic flux density of 10 T. This
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(f)

Figure 4. (Continued)

happens because suppression of backscattering is the predominant effect. In the absence of a
magnetic field, backscattering is the principal mechanism for deformation potential scattering
and it decreases significantly in a magnetic field [11]. Consequently, all relaxation rates
drop. Suppression of backscattering has the most serious effect on the momentum relaxation
rate since large momentum changes are caused by backscattering events rather than forward-
scattering events. To demonstrate the suppression of backscattering in a magnetic field, we
have plotted the rates for backward emission and absorption as well as forward absorption
separately in figures 4(d) and 4(e). There is no forward emission since the initial state of
the electron is in the lowest subband. In figure 4(d), no magnetic field is present while
in figure 4(e) a magnetic flux density of 10 T is applied. Note that, by our definition,
all forward-scattering events will have a negative momentum relaxation rate (since the
momentum increases after scattering) while all backscattering events will have a positive
momentum relaxation rate. In the absence of a magnetic field, backward emission is
dominant in momentum relaxation and it decreases by five orders of magnitude when a
magnetic flux density of 10 T is applied. Consequently, the overall momentum relaxation
rate decreases and the mobility should increase.

The two factors that increase scattering in a magnetic field (interface phonons and the
opening of new scattering channels) [5] are not that important for deformation potential
scattering. To show why increased interface phonon interaction (due to the Lorentz force
pushing electrons closer to the interface) is not important, we have plotted in figure 4(f )
the magnitude of the deformation scattering potential as a function of the coordinate along
the wire width and the phonon wave vector for the lowest phonon mode. Note that the
scattering potential peaks at the edges of the wire (y = ± 250Å), and so edge (or interface)
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(a)

Figure 5. (a) The scattering rate 1/τ(E1) for an electron in the first subband versus the initial
energyE1. The rates are calculated for piezoelectric potential interaction in a wire of width
500 Å and thickness 40̊A. The results are shown for two different values of the magnetic flux
density: 0 and 10 T. The lattice temperature is 77 K. (b) The momentum relaxation rate 1/τm(E1)

for an electron in the first subband versus the initial energyE1. The rates are calculated for
piezoelectric potential interaction in a wire of width 500Å and thickness 40̊A. The results are
shown for two different values of the magnetic flux density: 0 and 10 T. The lattice temperature
is 77 K. (c) The energy relaxation rate 1/τE(E1) for an electron in the first subband versus the
initial energyE1. The rates are calculated for piezoelectric potential interaction in a wire of
width 500Å and thickness 40̊A. The results are shown for two different values of the magnetic
flux density: 0 and 10 T. The lattice temperature is 77 K. The two insets show regions where
the energy relaxation rate is negative. Because of the very narrow widths of these regions,
they are shown on expanded scales in the insets. (d) The piezoelectric scattering potential as
a function of the wire width and phonon wave vector in a quantum wire of width 500Å and
thickness 40Å.

phonons should be important. Therefore, at first glance, one would expect scattering to
increase in a magnetic field since the electrons will be pushed towards the wire interfaces
by the Lorentz force. However, the interface scattering potential is large only for phonons
with a large wave vectors. Such phonons would tend to induce backscattering with large
momentum change rather than forward scattering with a small momentum change. Thus,
interface phonon interaction is primarily backscattering and that is suppressed by a magnetic
field. As a result, any increase in interface phonon scattering is more than offset by the
concomitant suppression of backscattering, so that the total scattering rate decreases in a
magnetic field.

In figure 4(c), we see that the energy relaxation rate is negative at the lowest energies
because absorption exceeds emission. At these very low energies, acoustic phonon emission
is blocked by the rules of energy conservation for all but the lowest one or two confined
phonon modes. As a result, absorption dominates. Note thatconfinedacoustic phonons
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(b)

(c)

Figure 5. (Continued)

(except those in the lowest one or two modes) [11] have non-zero energy at all wave
vectors unlike bulk acoustic phonons. Consequently, there is a finitethreshold energyfor
the emission of confined acoustic phonons in all but the lowest one or two modes. This
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(d)

Figure 5. (Continued)

threshold is obviously different for different phonon modes. Whenever the electron energy
is so low that it is below the thresholds for most phonon modes, absorption exceeds emission
and causes the energy relaxation rate to be negative.

A negative energy relaxation rate can cause very efficienttransient electron heating.
If the electron distribution function resides in the energy interval of the negative energy
relaxation rate, the distribution will be heated rapidly and then spread into regions of
positive relaxation rate. Thereupon the distribution will cool and gradually reach a steady
state. Once a steady state is reached, the principle of detailed balance will ensure that
the overall absorption will equal the overall emission. All that the negative relaxation
rate does is to speed up the onset of steady-state conditions. Thus the response of the
system to an external electric field is faster. The negative relaxation rate will also cause a
more pronounced velocity overshoot, since the latter is caused by a difference between the
momentum and energy relaxation rates.

Note that a magnetic field decreases the energy relaxation rate by suppressing back-
scattering.

In figures 5(a)–5(c), we have plotted the scattering rate, the momentum relaxation rate,
and the energy relaxation rate associated with piezoelectric potential interaction at a lattice
temperature of 77 K. The rates are plotted for magnetic flux densities of 0 and 10 T.

Figure 5(a) shows that the piezoelectric scattering rate goes up in a magnetic field.
This happens because (i) forward scattering increases in a magnetic field, and (ii) forward
scattering dominates over backward scattering, and hence even if the latter is suppressed
by a magnetic field, the total scattering rate still increases. To demonstrate this, we have
plotted in figure 5(d) the magnitude of the piezoelectric scattering potential as a function
of the coordinate along the wire width and the phonon wave vector for the lowest phonon
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mode. Note that the scattering potential peaks at the edges of the wire (y = ±250 Å),
and so interface phonons are important. However, unlike in the case of deformation
potential scattering, the piezoelectric scattering potential is larger at smaller phonon wave
vectors. Thus, forward-scattering events that involve small momentum changes are preferred
over backward-scattering events that cause large momentum changes. As a result forward
scattering dominates. Since forward scattering is not suppressed by a magnetic field, it
does not decrease, but rather, a magnetic field pushes electrons towards the wire interfaces
and increases the forward scattering due to the closer proximity of electrons to interface
phonons. Thus the total scattering rate goes up when a magnetic field is applied. This
explains the trend seen in figure 5(a).

The momentum relaxation rate, on the other hand, is still dominated by backscattering
since the latter causes much larger momentum changes than forward scattering which
involves small-wave-vector phonons. Insofar as backscattering is always suppressed by
a magnetic field [5, 6, 11], the momentum relaxation rate drops when a flux density of 10 T
in applied. This is evident is figure 5(b).

Finally, in figure 5(c), we plot the energy relaxation rates as a function of the electron
energy. Again, the energy relaxation rate is negative over certain intervals of energy
where absorption dominates over emission. However, these intervals are very narrow.
The magnetic field affects the region of negative energy relaxation rate and tends to shift it
to higher energies by altering the ratio of emission to absorption events. Thus the mobility,
diffusion coefficient (which depends on the electron temperature), noise spectral density,
and a host of other transport parameters can be ‘tuned’ using a magnetic field.

4. Conclusion

In conclusion, we have calculated the energy and momentum relaxation rates for confined
electrons interacting with confined acoustic phonons in a quantum wire subjected to a
magnetic field. We found that phonon confinement increases the momentum and energy
relaxation rates by about five orders of magnitude, and this should have a profound effect
on the mobility of carriers. We also found that the momentum relaxation rate is always
suppressed by a magnetic field, although the scattering rate may increase or decrease
depending on whether the interaction is polar or non-polar. Moreover, we found that the
energy relaxation rate can be negative over finite intervals of energy. These are regions of
highly efficient transientelectron heating. The existence of such regions promotes velocity
overshoot (which is also a transient phenomenon), since overshoot is caused by the difference
between the momentum and energy relaxation rates. This has important device implications
since in quantum wire transistors, the saturation drain current, the transconductance, and the
unity-gain frequency can all be improved by promoting velocity overshoot in the channel.
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